提要:
馬柯威茨模型及資本資產(chǎn)定價(jià)模型(CAPM)
傳統(tǒng)的證券投資組合理論更為注重定性分析,50年代,馬柯威茨通過研究預(yù)期收益率和投資組合方差創(chuàng)建了均值方差模型給投資組合理論帶來了重要的突破,其學(xué)生夏普等人在60年代提出了著名的資本資產(chǎn)定價(jià)模型(CAPM)。
投資者的無差異曲線
無差異曲線與有效邊界的切點(diǎn)
資本資產(chǎn)定價(jià)模型
證券市場線
主要內(nèi)容:
馬柯威茨均值方差理論和CAPM理論的假設(shè)前提
1、投資者以期望收益率來衡量實(shí)際收益率的總體水平,以收益率的方差(標(biāo)準(zhǔn)差)來衡量收益率的不確定性(風(fēng)險(xiǎn)),因而投資者在決策中只關(guān)心投資的期望收益率和方差。
2、投資者是不知足的和厭惡風(fēng)險(xiǎn)的,即投資者總是希望期望收益率越高越好,而方差越小越好
3、資本市場沒有摩擦,不考慮交易成本和征稅,假定市場資金自由流動,在借貸和賣空上沒有限制。
投資者的無差異曲線
馬柯威茨在幾個(gè)假設(shè)的前提下得出了投資者總是在有效邊界上選擇其證券組合,但是不同的投資者會在有效邊界上選擇不同的投資組合。這樣我們就要研究投資者偏好并在此基礎(chǔ)上得出不同投資偏好的最優(yōu)證券組合模型。
風(fēng)險(xiǎn)偏好可以通過滿足程度無差異曲線來衡量。所謂無差異曲線,是給投資者帶來相同滿足程度的收益率和風(fēng)險(xiǎn)組合形成的軌跡。
如圖:A只關(guān)心收益而不考慮風(fēng)險(xiǎn),C只關(guān)心風(fēng)險(xiǎn)而不考慮收益,這兩種體現(xiàn)了偏好的極端。具有顯示意義的是B和D,B相對更偏好于收益,愛好冒險(xiǎn);D比較保守,厭惡冒險(xiǎn)。
無差異曲線也說明除非從風(fēng)險(xiǎn)中獲得報(bào)酬,否則投資者不會增加風(fēng)險(xiǎn)的理性投資,同時(shí),增加一單位的邊際收益投資者愿意承受的邊際風(fēng)險(xiǎn)越來越小,體現(xiàn)了邊際效用遞減的規(guī)律。
最優(yōu)證券組合
我們可以結(jié)合無差異曲線和投資組合的有效邊界分析出,投資者的最佳組合為無差異曲線與有效邊界的切點(diǎn)。
圖中的M點(diǎn)為最佳組合點(diǎn),此點(diǎn)在有效邊界上,同時(shí)又給投資者帶來最大的滿足程度。