2014年經(jīng)濟(jì)師《中級經(jīng)濟(jì)基礎(chǔ)》新考試指南:第二十二章
考點四 概率抽樣方法
概率抽樣
方法 |
含義 |
優(yōu)缺點 |
適用條件 |
簡單隨
|
是基本的隨機(jī)抽樣方法,分為不放回簡單隨機(jī)抽樣和有放回簡單隨機(jī)抽樣兩種方法
|
(1)優(yōu)點:操作簡單,且每個單位的人樣概率相同,樣本估計量形式也比較簡單 |
(1)抽樣框中沒有更多可以利用的輔助信息 (3)個體之間的差異不是很大 |
分層抽樣
|
指先按照某種規(guī)則把總體分為不同的層,然后在不同的層內(nèi)獨(dú)立、隨機(jī)地抽取樣本,這樣所得到的樣本稱為分層樣本。 |
特點: |
(1)抽樣框中有足夠的輔助信息,能夠?qū)⒖傮w單位按某種標(biāo)準(zhǔn)劃分到各層之中 |
續(xù)表
方法 |
含義 |
優(yōu)缺點 |
適用條件 |
系統(tǒng)抽樣
|
指先將總體中的所有單元按一定順序排列,在規(guī)定范圍內(nèi)隨機(jī)抽取一個初始單元,然后按事先規(guī)定的規(guī)則抽取其他樣本 |
(1)優(yōu)點:①操作簡便。因為它只需要隨機(jī)確定起始單位,整個樣本就自然確定了;②對抽樣框的要求也比較簡單,它只要求總體單位按一定順序排列,而不一定是一份具體的名錄清單 |
|
整群抽樣
|
是將總體中所有的基本單位按照一定規(guī)則劃分為互不重疊的群,抽樣時直接抽取群,對抽中的群調(diào)查其全部的基本單位,對沒有抽中的群則進(jìn)行 |
(1)優(yōu)點:①實施調(diào)查方便,可以節(jié)省費(fèi)用和時間;②抽樣框編制得以簡化,抽樣時只需要群的抽樣框,而不要求全部基本單位的抽樣框 |
適用于群內(nèi)各單位之間存在較大差異,群與群結(jié)構(gòu)相似的情形
|
多階段
|
在大規(guī)模抽樣調(diào)查中,一次抽取到終樣本單位是很難實現(xiàn)的,往往需要經(jīng)過二個或二個以上階段才能抽到終樣本單位,這就是多階段抽樣方法 |
(1)優(yōu)點:①抽樣是分階段進(jìn)行的,抽樣框也可以分級進(jìn)行準(zhǔn)備;②樣本的分布相對集中,從而可以節(jié)省調(diào)查中的人力和財力 |
|
【例6·單選題】下列屬于分層抽樣方法的適用條件的是( ?。?
A.調(diào)查對象分布的范圍不是很廣闊
B.不同層各單位的差異盡可能大
C.個體之間的差異不是很大
D.抽樣框中沒有更多可以利用的輔助信息
【答案】B
【解析】本題考查分層抽樣方法的適用條件。選項ACD屬于簡單隨機(jī)抽樣方法的適用條件。
【例7·多選題】整群抽樣的優(yōu)點有( ?。?
A.操作簡便,只需要隨機(jī)確定起始單位
B.對抽樣框的要求簡單,總體單位按順序排列
C.實施調(diào)查方便,可以節(jié)省費(fèi)用和時間
D.方差估計比較簡單
E.抽樣框編制得以簡化,只需要群的抽樣框
【答案】CE
【解析】本題考查整群抽樣的優(yōu)點。
2014新輔導(dǎo):2014年中級經(jīng)濟(jì)基礎(chǔ)知識完美備考 |2014中級經(jīng)濟(jì)師各科練習(xí)題
真題推薦:2003-2013年中級經(jīng)濟(jì)師考試真題匯總 2003-2013年初級經(jīng)濟(jì)基礎(chǔ)真題及答案
網(wǎng)校輔導(dǎo):為幫助考生在自學(xué)的基礎(chǔ)上能較好地掌握2014年經(jīng)濟(jì)師考試內(nèi)容,233網(wǎng)校精心為大家提供了2014年經(jīng)濟(jì)師初中級經(jīng)濟(jì)基礎(chǔ)沖刺班、習(xí)題班等課程,點擊免費(fèi)試聽>>
相關(guān)推薦
?γ??????? | ??? | ???/???? | ??????? | ???? |
---|---|---|---|---|
2017???м???????????????? | ?????? | ??350 / ??350 | ???? | |
2017???м?????????? | ?????? | ??350 / ??350 | ???? | |
2017???м????????????????? | ?????? | ??350 / ??350 | ???? | |
2017???м????????????? | ????? | ??350 / ??350 | ???? | |
2017???м????????????? | ????? | ??350 / ??350 | ???? | |
2017???м???????????????? | ??? | ??350 / ??350 | ???? | |
2017???м?????????t????? | ??? | ??350 / ??350 | ???? | |
2017???м???????????t????? | κ???? | ??350 / ??350 | ???? |